הקביעה אם שלושה אורכי צד יכולים ליצור משולש קלה יותר ממה שזה נראה. כל שעליך לעשות הוא להשתמש במשפט אי -השוויון במשולש, הקובע כי סכום שני אורכי הצד של משולש תמיד גדול מהצד השלישי. אם זה נכון לגבי שלושת הצירופים של אורכי הצד המחוברים יחדיו, אז יש לך משולש.
שלב

שלב 1. למד את משפט אי -השוויון במשולש
משפט זה פשוט קובע כי סכום שני צלעות המשולש חייב להיות גדול מהצד השלישי. אם משפט זה נכון לגבי כל שלושת הצירופים, הרי שיש לך משולש תקף. יהיה עליך לחשב את השילובים האלה אחד אחד כדי לוודא שהמשולש הוא שמיש. אתה יכול גם לדמיין משולש בעל אורכי צד a, b ו- c, ולחשוב על המשפט כאי -שוויון, הקובע: a+b> c, a+c> b ו- b+c> a.
בדוגמה זו, a = 7, b = 10 ו- c = 5

שלב 2. בדוק אם סכום שני הצדדים הראשונים גדול מהצד השלישי
בבעיה זו, אתה יכול להוסיף את הצדדים a ו- b, או 7 + 10, כדי לקבל 17 שזה גדול מ -5. אתה יכול גם לחשוב על זה כ- 17> 5.

שלב 3. בדוק אם סכום השילובים הדו-צדדיים הבאים גדול מהצדדים הנותרים
כעת, בדוק אם סכום הצדדים a ו- c גדול מצידה b. המשמעות היא שעליך לראות אם 7 + 5, או 12 גדול מ- 10. 12> 10, כך שהוא גדול יותר.

שלב 4. בדוק אם סכום שני צירופי הצדדים האחרונים גדול מהצדדים הנותרים
אתה צריך לראות אם סכום צד b וצד c גדול מצידה a. לשם כך עליך לבדוק אם 10 + 5 גדול מ- 7. 10 + 5 = 15 ו- 15> 7, כך ששלושת הצדדים הללו עוברים את המבחן ויכולים ליצור משולש.

שלב 5. בדוק את עבודתך
כעת, לאחר שבדקת את שילובי הצדדים בזה אחר זה, תוכל לבדוק אם כלל זה נכון לגבי כל שלושת הצירופים. אם הסכום של כל שני אורכי צד גדול מהשלישי בכל הצירופים, כפי שקורה במשולש זה, הרי שקבעת שהמשולש הזה תקף. אם החוקים אינם תואמים, אפילו עבור שילוב יחיד, המשולש אינו תקף. מכיוון שהמשפטים הבאים נכונים, מצאת משולש תקף:
- a + b> c = 17> 5
- a + c> b = 12> 10
- b + c> a = 15> 7

שלב 6. דע כיצד לזהות משולשים לא חוקיים
רק לתרגול, עליך לוודא שאתה יכול להבין את המשולשים הבלתי שמיש. נניח שאתה עובד עם שלושת אורכי הצד האלה: 5, 8 ו- 3. בואו נראה אם הצדדים האלה עוברים את המבחן:
- 5 + 8> 3 = 13> 3, אז צד אחד עובר את המבחן.
- 5 + 3> 8 = 8> 8. מכיוון שחישוב זה אינו חוקי, תוכל לעצור כאן. צורה זו אינה משולש.